
CPS122 Lecture: Design Patterns Last revised March 4, 2019

Objectives

1. To introduce and illustrate the idea of design patterns
2. To introduce some key design patterns students have used or will use:  

• Singleton  
• Abstraction-Occurrence  
• Iterator  
• Observer  
• Factory  
• Decorator (Wrapper/Filter)  
• Adapter

3. To demonstrate how several design patterns can be used together to solve a
specific problem

4. To introduce the DisplayableCollections package  

Materials

1. “Gang of Four” Design Patterns book to show
2. Projectable of pp. 6-7 of book (general description of “pattern language”
3. Projectable of p. 127-128 (the Singleton pattern)
4. Projectable of figures 6.1 and 6.2 from Lethbridge/Langaniere
5. Projectable of String array operations not using an iterator
6. Demo and handout of Iterator demo
7. Spreadsheet with multiple charts demo
8. Projectable of abstract sequence diagram for Observer pattern (p. 295)
9. Projectable of simple Observer demo (tic-tac-toe)
10.Demo and handout of Observable demo
11.Demo and handout of swing program with buttons with different looks and feels
12.Projectable of “Gang of Four” book page 175 (Decorator pattern)
13.Demo of my version of library showing multiple patterns use in solving a problem
14.Excerpts from source code for AbstractDisplayableMap and ListModelAdapter.
15.Documentation (online) for DiplayableCollections package
16.Handout of demonstration use of DisplayableCollections for an address book

�1

I. Introduction

A.One of the characteristics of an expert in many fields is that the expert
has learned to recognize certain patterns that characterize a particular
problem or call for a particular approach to a solution.  
 

Examples:

1. A civil engineer uses certain structural patterns when designing
bridges, highways, etc.

2. A Medical Doctor recognizes certain patterns of symptoms as
indicative of certain diseases.

B. In the world of OO software, one key concept is the concept of design
patterns - standard patterns of relationships between objects in a system (or
portion of a system) that constitute good solutions to recurring problems.  
 

QC Question l

1. A key book in this regard is the book Design Patterns by Gamma, Helm,
Johnson, and Vlissides (known in OO circles as “the Gang of Four”).

a) SHOW

b) This book classifies the patterns it discusses into three broad
categories, which were also discussed in the book. What are they?  
 

ASK - QC Question m

2. One important characteristic of the study of patterns is the idea of
giving each pattern a name, so that when people talk they can use
the name of the pattern and others will know what they are talking.
(Unfortunately, some key patterns have more than one name; but at
least we don’t have the issue of the same name referring to different
patterns!)  
 
QC Question n - then pick up

�2

3. In addition to giving the overall pattern a name, we also give a
name to the various objects that participate in the pattern. Here, the
name given to each object is mean to describe its role and
responsibilities. The object does not have to actually be called by
this name - the purpose of the name in the pattern is simply to help
us understand how responsibilities are apportioned.  
 

EXAMPLE: At the present time, the person who has the role and
responsibilities of President of the United States is Donald Trump.
We may refer to him as “the president” - but his parents did not
name him “President”, they named him Donald!

C. In this lecture, we will try to illustrate the concept of design patterns
by introducing several examples of design patterns - each of which is a
good way to solve a particular kind of problem in a software system.

1. Obviously, one only wants to use the pattern if it meets a real need,
of course!

2. Most actually are patterns you have already used in labs or your
project.

D.We will begin with an example you’ve already used, and show how to
describe it using “pattern language”.  
 

In standard discussions of patterns (including the “Gang of Four”
book), it is common to describe patterns in a standard way.  
 

PROJECT: pp. 6-7 of “Gang of Four” book  
 

(Note: we will discuss patterns from other sources as well - but the
“style” of this book is an accepted standard regardless of where the
pattern descriptions come from.)

�3

II. The Singleton Pattern

A.We will begin by talking about a pattern that you are already familiar
with. One of our goals will be to use it as an example of how patterns
are described. The singleton pattern is applicable wherever there is a
kind of object where it is necessary that there be one and only one
copy of this object in existence.  
 
Where have you seen this pattern?  
 
ASK

B. It belongs, therefore, to the category of creational patterns.

C. Project, go over pages 127-128 of the “Gang of Four” book

III.The Abstraction-Occurence Pattern

A.Another pattern you have been using in your library project is a pattern
called the Abstraction-Occurrence pattern. Can anyone describe this
pattern and how it relates to the library project?  
 

ASK

B. In terms of the three categories of pattern we discussed earlier, to
which category would this pattern belong?  
 

ASK  
 

Structural

C. This pattern actually doesn’t appear in the “Gang of Four” book. The
author of one book that does discuss it introduces this pattern this way:
“Often in a domain model you will find a set of related objects that we will
call occurrences; the members of such a set share common information but
also differ from each other in important ways.  
 
Examples: ASK  

�4

D.This particular situation is one to which it turns out there are both good
and bad solutions. The idea is to represent the various occurrences in
some way that avoids duplicating the common information.

1. In general, the clean solution is to use two classes - an  
« abstraction » class and an « occurrence » class.  
 
PROJECT: Figure 6.1 of Lethbridge/Langaniere

2. The author of this book also notes that there are a number of
possible “antipatterns” (or poor solutions.) Let’s look at several
and discuss why each is not a good way to solve the problem.  
 
PROJECT: Figure 6.2. of Lethbridge/Langaniere  
 
Discuss why each “solution” is not good

a) This example is undesirable because of replication of
information. It would become even worse if some of the
common information were subject to change, since it would
have to be updated multiple times.

b) This example is undesirable because each new instance of the
abstraction (e.g. new book title) would require creation of a new
class - necessitating recompilation of the software and resulting
in a proliferation of classes.

c) This example is undesirable because it involves replication of
information again - even though the occurrence class does not
have attributes for the information, its base class (and therefore
every one of its objects) does.

E. This particular problem illustrates one of the virtues of studying design
patterns - you can find a clean solution to a problem, while avoiding
mistakes that would otherwise be easy to fall into.

�5

IV.The Iterator Pattern

A.Another pattern you have used is the Iterator pattern. The Iterator
pattern prescribes three roles: a collection, an iterator over the
collection, and an object that uses the iterator to systematically visit all
the items in the collection.  
 

Where have you seen this pattern before?  
 

ASK

B. What category of patterns would this belong to?  
 

ASK  
 

Behavioural

C. To see the motivation for the pattern, suppose that we had a collection
of Strings, and we want to perform various operations on all the strings
in the collection at various points in the program. Suppose, further,
that the collection of Strings were stored in an array.  
 

String [] someCollection;

1. Now, we could systematically print all the strings by using a loop
with an index into the array:  
 

for (int i = 0; i < someCollection.length; i ++)  
System.out.println(someCollection[i]);  

 

PROJECT

2. Suppose, at some other point in the program, that we want to print
out the shortest string in the collection (and suppose that they are
not necessarily stored in order of length.) The following code
would work (assuming the collection contains at least one string.)  
 

String shortest = someCollection[0];  
for (int i = 1; i < someCollection.length; i ++)  
 if (someCollection[i].length()< shortest.length())  
 shortest = someCollection[i];  
 

PROJECT 

�6

3. In similar fashion, we could write code to find the alphabetically-
first (or last) string, or to print out all the strings that begin with the
letter ‘A’, or whatever.

4. Now suppose we decide to use a different collection to store the strings -
perhaps a Set or a List or whatever. All of the code would need to be
modified to change the way it accesses the strings; further, the code
would need to know the details of how the collection is stored.

D.A better approach is to separate the notion of “iterating over all the
elements in the collection” from the details of how the collection is
stored. This decoupling is accomplished by an iterator.

1. An iterator is always attached to some collection. Usually, a
collection has some method that creates an iterator for the
collection - so the way that an iterator is constructed is by asking
the collection to create one. At any time, a given collection may
have any number of iterators in existence.  
 

�  

2. Moreover, an iterator always either refers (implicitly) to some
element in the collection, or is at the end of the collection. If a
collection has several iterators, each has its own position relative to
the collection.

3. An iterator has three basic responsibilities:

a) Report whether or not it currently refers to an element of the
collection.

b) If it does refer to an element of the collection, provide access to
that element

c) Advance to the next element of the collection

IteratorCollection 1 *

�7

4. An iterator provides access to the elements of the collection is
some order that is defined by the underlying collection - but which
always satisfies certain properties.

a) A newly-constructed iterator always refers to the “first” element
of the collection. (Where “first” is defined by the underlying
collection - e.g. if the collection is a Set, the choice may appear
arbitrary but actually obeys some consistent rule that the user of
the iterator need not be aware of.)

b) If the iterator is used to systematically visit each element of the
collection (by repeatedly accessing the current element and
advancing to the next), every element of the collection will be
visited exactly once in some collection-specified order, and then
the iterator will become past the end of the collection.

5. If code is written to access all the elements of a collection through
an iterator, and the kind of collection is changed, the only other
code that may (or may not) need to be changed is the code that asks
the collection to create the iterator.

E. The java.util package defines an Iterator interface, and each of the
collections it supports have an iterator() method that creates a new
iterator and returns it.

1. The Java iterators differ slightly from the responsibilities I have
presented above:

a) The operations of accessing the current element and moving on
to the next element are combined in a single method.

b) An iterator can also support a method for removing the last
element visited from the collection.

c) Thus, the Java Iterator interface contains three methods

�8

(1) hasNext() - true unless past the end of the collection

(2) next() - combines accessing the current element with
moving on to the next

(3) remove() - remove from the collection the last element that
was returned by next(). [An iterator for a particular type of
collection is not required to actually support this operation.]

2. As you discovered in lab, you cannot create an iterator for a Map
directly. That’s because a Map actually involves two collections - a
collection of keys, and a collection of values - plus an association
between members of the two collections. Thus, to iterate over a Map,
you must use the Map’s keySet() or values() method to get access
to the appropriate collection, and then get an iterator from it.

F. An example of making use of the Iterator pattern

1. Handout Discuss Iterator demo code

2. Run it

3. Go over it

4. AN IMPORTANT NOTE: Unless one is building a collections
package, one normally doesn’t have to actually implement iterators
- just use them. The implementation is include here so you can see
how iterators actually work.

G.A year from now, you will be learning how collections are actually
implemented, and will use C++. The C++ standard library also defines
iterators, which work the same way, though the names of the methods
are different:

�9

1. A collection will have a method called begin() to create an
iterator that refers to the start of the collection.

2. A collection will have a method called end() to create an iterator
that is one past the end of the collection. Two iterators to the same
collection can be compared to see if they refer to the same point by
using ==.

3. The element an iterator refers to is accessed by using the * operator.

4. An iterator is advanced to the next element by using the ++
operator.  
 

Thus, C++ code for printing all the strings in a collection of strings
similar to the example we have done in Java would look like this:  
 

for (someCollection::iterator iter =  
 someCollection.begin();  
 iter != someCollection.end();  
 iter ++)  
 -- code to write out * iter;  
 
(I’ve shown you this C++ code now, because you’ll see a lot of
code like this next semester, and it will be helpful to recognize then
what pattern is being used.)

5. Actually, C++ iterators can be bidirectional - i.e. allowing one to
either move forward or backward within the collection. Some
collections support a reverse iterator that allows you to get an
iterator that refers to the last item in the collection and then work
backwards from there.

V. The Observer Pattern

A.The Observer pattern is useful when we have two kinds of objects called
an observable (or subject) and an observer, that are connected in such a
way that the observer needs to know about changes in the observable, but
we want to minimize the coupling between these objects.  

�10

 

(The view and model classes in an MVC system are a good example of
this - when the model changes, the view(s) may need to change - but we
don’t want to tightly couple the model and view. Thus far, we have not
used the Observer pattern to implement an MVC system, largely because
our example systems have been very simple.)

B. An example: spreadsheet with chart(s) based on data  
 

DEMO

C. In the Observer pattern, we have two kinds of classes: an observable
class, and one or more observer classes, with specific responsibilities.

1. The observable maintains some information that is of interest to the
observer(s), and is responsible to furnish that information to it/them
upon request.

2. Each observer is responsible to register itself with the observable,
by calling some registration method.

3. When the observable changes, it is responsible to notify each of its
registered observers about the change. The notification may
include some indication as to what has changed (though the pattern
does not mandate this.)

4. Each observer is responsible to have an appropriate method which
the observer can invoke when it changes.

5. Each observer, in turn, is responsible to look at the notification it
received and - if something of interest to it changed - request
appropriate updated information from the observable.  
 

PROJECT - Abstract sequence diagram for this pattern from “Gang
of Four” book p. 295

�11

D.The Java standard library provides support for this pattern

1. The API defines a class called java.util.Observable and an
interface called java.util.Observer.

a) Observable is a class because it implements behaviors that any
observable object needs; but if an observable inherits them,
then it does not need to implement them itself.

b) Observer is an interface because all that is required to be an
observer is that one have a method called update() that allows
the observable to inform it of changes. What this method
actually does varies greatly from situation to situation, so there
is no benefit to inheriting any implementation.

2. An observer registers itself as being interested in being notified of
changes to an observable by calling the method addObserver() of
the observable.

3. Any code that changes an observable calls a method of the observable
called setChanged() and then calls notifyObservers() to actually
report changes to its observers. (Usually, these calls are part of the
code of a method of the observable object.)

a) notifyObservers() can be called without the object having
changed, in which case nothing happens. Once
notifyObservers() has been called the observable is
considered unchanged until setChanged() is called again.

b) Several changes can be made before observers are notified to
reduce overhead, if desired.

4. When an observable has changed and notifyObservers() is
called, the update() method of each registered observer is called.

�12

a) The first parameter to update() is the observable that has
changed.

b) The second parameter is an optional parameter to
notifyObservers() that can specify the nature of the change.
It is often null.

5. When an observer’s update() method is called, it is responsible to
use an appropriate method or methods to access the observable to
get at the new information, and then to take appropriate action.

E. A simple example: A program that plays tic-tac-toe might have a
model class called Board and a view class called BoardDisplay  
 
PROJECT Sample code and go over use of pattern

F. Another example: Observer Demo

1. The program consists of an observable object that records a
temperature, and three views that report the temperature using three
different scales (Celsius, Fahrenheit, and Kelvin.) A new
temperature can be typed in any view, and all three views are
updated to reflect the new temperature.

2. DEMO

3. HANDOUT - source code - go over

�13

VI.The Factory Pattern

A.The factory pattern is a fairly sophisticated pattern that is a bit hard to
get a hold of. Perhaps the best way to get a handle on it is to show an
example of a place where it is used. The illustration we will use is not
one where the factory pattern is visible on the surface, but it plays a
key role behind the scenes.

B. As you recall, earlier in the course we discussed the Java swing package,
which incorporates the notion of “pluggable look and feel”. In essence,
what this means is that, when a GUI component (e.g. a button) is created,
it displays itself using in the way appropriate to its look and feel. It turns
out that how a component displays itself is determined when it is created.

1. Example - it is possible to create a swing program with several
buttons that have different looks and feels. (Not a good idea in
general, but we do this here for illustration.)

2. Demo program.

3. Handout / discuss code

C. Behind the scenes, this functionality is implemented by using factories.

1. A factory is an object that creates other objects. It is possible to have
different factories that have the same interface - i.e. produce objects of
the same general kind - but each produce their own kind of object.

2. In essence, Swing uses factories to produce the various components
that can displayed, which are different for different looks and feels.
Each factory has methods for producing each of the various kinds of
components. (The explanation given here is vastly simplified.)

3. The setLookAndFeel() method chooses a particular factory, and
when components are subsequently created, their visible
representation is “manufactured” by the current factory  

�14

VII.The Decorator Pattern (also known as Wrapper, Filter)

A. PROJECT “Gang of Four Book” page 175.

B. In general, this decorator (wrapper) approach is useful whenever we have a
class whose functionality we want to extend, but we have good reason not to
modify the source code for the class itself. We put the added functionality
into a wrapper, that also forwards original requests to the object within.

1. We will look at a major example of this in the structure of the
java.io package in a couple of weeks.

2. We will also look at an example that makes use of this at the end of
this lecture.

VIII.The Adapter Pattern

A.In general, we use the Adapter pattern when we have an object that
provides the basic functionality we need, but doesn’t have the interface
we need. To do this, we encapsulate the object in an adapter object
that provides the needed interface by “forwarding” operations to the
encapsulated object.  
 

�

B. We will illustrate this shortly

Object to be adapted -
provides the needed
functionality but not
the needed interface

Adapter object - provides the
desired interface by
“fowarding” operations to the
encapsulated object

�15

IX.Putting it all Together - an Illustration of Patterns Use

A.To illustrate how patterns can be used, consider the following practical
problem that could arise if fully implementing your Library.  
 

It would be nice if various panes of the GUI could display lists of
patrons and items, the former in alphabetical order of name and the
latter in call number order.

1. To handle a patron's fines, we could go to the patron list, select the
patron, and click a “Fines” button.  
 

DEMO in my version - note that supporting code is not
implemented, but this is how interface would work if it were

2. To add copies of an item, we could go to the item list, select the item,
and click an “Add Copy” button.  
 

Log in as manager on the manager pane, then DEMO in my version

3. To deal with reservations, we could go to the item list and click a
“Reservations” button to deal with the reservations for that item.  
 

DEMO in my version - note that supporting code is not
implemented, but this is how interface would work if it were

4. To keep our subsequent discussion simple, we will focus on dealing
with the display of the patrons list.

B. It actually turns out that this is much more easily said than done!
Here’s why.

1. A JList (which is the GUI component that is used to display the
patrons list) is backed by an object called the list model that keeps
track of the items displayed in the list. A list model must
implement the ListModel interface.  
 

SHOW javax.swing.ListModel documentation.  
 

�16

Note that the key functionality is the ability to access an element by
position - which is needed to support operations like scrolling the
list. (The getElementAt(int) method).

2. However, we want to store the patrons list in the library using some
form of Map - and maps do not provide the ability to access items
by position, but only by key.

3. Further, a sorted map (TreeMap) keeps items in key order (e.g.
phone number); but we would prefer to have the list be displayed in
alphabetical order of name.

C. We can begin to solve the problem by creating an adapter that allows a
map to be used as the ListModel for a JList. To do this, it can

1. Maintain an internal vector of elements

2. At creation, get the list of elements from the appropriate map, sort
them into the order they will be displayed in, and store them in the
internal vector.

3. Provide access to the vector by position through the
getElementAt(int) method required by the ListModel interface
- since a Vector does support accessing elements by position.

D.However, this is not a complete solution. What if the list changes?
(E.g. if we add or delete a patron?) Here, we could use the Observer
pattern - i.e.the ListModel adapter is made an observer of the map -
so that whenever the map is changed, the ListModel adapter updates
its list.

1. Unfortunately, this is not easily possible, because maps do not
implement the Observable interface!

2. So we make use of a third pattern - the Wrapper pattern. We wrap a
TreeMap in an observable class that:

�17

a) Implements the same interface as a TreeMap
(java.util.SortedMap)

b) Forwards SortedMap operations that don’t change the map to
the encapsulated map

c) Forwards any operation that changes the map to the the
encapsulated map and then notifies its observers that the map
has changed.

E. We then get the following:

�

F. DEMO

1. Add a new patron

2. Edit a patron, changing the name

3. Delete a patron

G.Show Code

1. AbstractDisplayableMap

a) Variable encapsulatedMap; constructor,

java.util.TreeMap

DisplayableTreeMap

java.util.Vector

ListModelAdapter
« observer »

�18

b) containsKey(), get(), put(), remove()

c) changed()

2. ListModelAdapter.ForCollection

a) Variable elements

b) getElementAt(), getSize()

c) update() [in ListModelAdapter]

X.Using the DisplayableCollections pattern in your project

A.You don't need this package for Iteration 1. You may want to use it for
Iteration 2 in connection with representing the lists of patrons, items,
etc. However, use of this package is entirely optional,

B. All the code for this package is included in compiled form in the
starter code you have been given for the project. Complete
documentation for the package is available online.  
 
SHOW

C. We will look briefly at a demonstration of how this can be used in code
- a simplified version of the address book modified to make use of this
package.  
 
HANDOUT

1. Note imports for classes needed from displayablecollections package

2. Constructor:

a) The address book is stored in a DisplayableTreeSet

�19

b) The GUI component displaying the list of persons is called
personList. Its model is set equal to an object created by the
orderedListModel() method of the address book.

c) The Person class defines a toString() method that determines
what is displayed for a person. (End of handout)  
 
Note: toString() is part of the standard Object interface in Java,
and defines how an object is to be displayed as a character string.

d) The Person class also implements the Comparable interface and
defines a compareTo() method that specifies how persons are to be
ordered in the display.

e) Whenever the address book is changed (by the New or Open use
cases), the list model must also be updated - note how this is done
in the code.  

f) That's all that's needed - the list will display whatever is in the
address book, and whenever the address book is updated, the
address book will change.  
 
Methods that modify the address book (such as doAdd() do not
need to include any code to update the GUI - this is done
automatically by the observer pattern whenever the book is
changed.  
 

�20

